
CEWES MSRC/PET TR/99-02

A Survey of Co-Processing Systems

by

Randy Heiland

 M. Pauline Baker

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

A Survey of Co-Processing Systems
by

Randy Heiland
and

M. Pauline Baker

NCSA
University of Illinois

August 1998

1. Introduction

This report examines systems to support interactive computation, or computational monitoring
and steering. Computational monitoring allows the researcher to use computer-generated
graphics to visually monitor the progress of a job. Alternatively, interactive computation lets the
user access the current state of output data to perform some secondary analysis. Interactive
steering extends this functionality such that the user can modify parameters of the simulation
while it is running.

Computational monitoring allows the user to access output data as it is produced. This offers the
following advantages:

• Monitoring can alert a user to the fact that a run has gone awry and should be stopped
without wasting further compute cycles.

• For computations where the data is too large to store or post-process, generating
visualizations throughout the life of the run might be the only way to analyze results of
the run.

Not all computations are appropriate for computational monitoring and/or steering. Candidates
for computational monitoring will typically be an iterative computation (e.g., time-dependent
PDE, looping over a spatial domain), and will be parallel and distributed. For those
computations that complete very quickly, or that produce only small simulation output,
computational monitoring might not be necessary or worth the effort. And for projects that
consist of routine production runs, computational monitoring might not add value. However, if
the computational output is too large to post-process conveniently, producing visualization
during the run might be the only way to get a look at the simulation output. Interactive
computation might also be useful to these production-dominated projects in the early stages of
the effort, when algorithm development and debugging of the simulation code dominate the
effort.

This report surveys existing software packages that offer at least partial solutions to the problem
of interactive computation. Our observations are based solely on the documentation provided
with each package. A later report will describe our experiences (and those of colleagues) with
hands-on use of a subset of these packages.

The primary contribution of this initial report is to provide a synopsis of software packages that

might be useful for interactive computation. Our survey will address the following topics:

Availability Where can I get it? Cost?

App Domain Is it intended for specific applications?

Platforms On what platforms will it run?

Dependencies On what software does it depend?

Functionality What exactly does it do?

At the end of this report, we provide some relevant links and references.

2. Software Packages

The following packages were selected for this survey. These are the major systems available
now that support co-processing.

Freely available Restricted availability
CUMULVS SCIRun

DICE AVS
FASTexpeditions IBM Data Explorer

pV3
Vis5D
VisAD
scivis

CUMULVS

CUMULVS (Collaborative User Migration User Library for Visualization and Steering) was
developed at Oak Ridge National Laboratory. It is described as an "infrastructure library that
allows multiple, possibly remote, scientists to monitor and coordinate control over a parallel
simulation program". Coordinating control means being able to interactively change values of
input parameters, thereby steering the computation.

Essentially, an application program would be modified slightly by calling a few routines in the
CUMULVS library. These routines would describe the data distribution and the steerable
parameters, and would enable the visualization. A separate "viewer" program is used to request
chunks of data to visualize. The CUMULVS software comes with three sample "viewer"
programs: a text-only version, an AVS (AVS5) module, and a Tcl/Tk viewer for a particle-based

example application. In addition, there is work ongoing at NCSA to provide a viewer based on
VTK, the Visualization ToolKit (www.kitware.com/vtk.tml). From a viewer, one makes requests
to the running application for a "frame" of data and the frequency with which to receive frames.
(A frame of data would be defined by a range and step size for each coordinate index of the
computational domain.) A nice feature is being able to attach and detach a viewer from a running
computation.

CUMULVS uses (is dependent on) PVM, but this does not affect the application program. As
PVM evolves into Harness (www.epm.ornl.gov/harness), CUMULVS is supposed to evolve
also.

The source and documentation is freely available and the User's Guide seems quite adequate for
getting started.

DICE

DICE (Distributed Interactive Computing Environment) was developed at the Army Research
Laboratory Major Shared Resource Center (ARL MSRC). It is described as a flexible framework
for runnning and visualizing computationally intensive codes in a heterogeneous distributed
environment. It consists of a distributed shared memory facility, 2D and 3D graphics, GUI tools,
and custom interfaces for some existing codes.

At the foundation of DICE is the Network Distributed Global Memory (NDGM) system, also
developed at the ARL MSRC. This system, as its name implies, is an implementation of
distributed shared memory (DSM), where the distribution can be across a network. The memory
buffer that is shared among processes is unstructured. To provide some structure to this buffer,
sitting on top of NDGM is the DICE Data Directory (DDD). This uses NCSA's Hierarchical
Data Format (HDF). Using the DDD, one can specify that some data is to be stored in a disk file
while other data is to be stored in the NDGM buffer.

Another component of DICE is the DICE Visualizer (DV). While this originally consisted solely
of custom visualization data filters (e.g., isosurfaces and slice planes), the latest version takes
advantage of VTK (the Visualization ToolKit). (Technically, the data filters are not part of the
DV).

The DICE GUI sitting on top of all the components uses Tcl/Tk plus some Tcl/Tk extension
packages: Tix, BLT, and Dp. The GUI allows interfaces to NDGM, the DDD, the DV, and
(optionally) the application code itself.

There seems to be a concerted effort to incorporate DICE into existing, high-demand
applications, especially DoD CHSSI applications. Two of these are CTH, a structural mechanics
code, and Dzonal, a 3D Navier-Stokes code.

The software is not publicly downloadable. Contact the authors for access.

FASTexpeditions

FASTexpeditions was developed at the Numerical Aerospace Simulation (NAS) Facility at
NASA Ames Research Center. As stated in their Overview of FASTexpeditions, its key concept

is the following:

Instead of sending scientific data over the network as pixels to a movie player,
data is sent in a basic form that can be analyzed by FAST, a sophisticated
analysis tool, running on the recipient's computer. In addition, scripts for driving
FAST are included. These scripts provide a variety of guided expeditions through
the data. The recipients can take the guided expeditions, create extensions with
their own "what if" analysis, or conduct their own expeditions independently from
the guided expeditions. This technique provides a more effective scientific
analysis and reduces the load on the network.

FASTexpeditions uses FAST (Flow Analysis Software Toolkit). FAST offers the following
advantages:

• It is available free
• It has a rich set of analysis tools
• It provides the high performance needed for effective interactive analysis.
• It is a complete package. No coding or assembly of modules is required.

Creating the FASTexpeditions is trivial. FAST has a built-in journal feature that automatically
records your actions as a script file that can be replayed. A FASTexpedition is essentially just
one of these script files. Furthermore, the script files are plain text, so they can be easily edited
with any text editor.

It has built-in stereo viewing

It has a large user base already established

FASTexpeditions requires an SGI workstation. (It uses the SGI gl library. Val Watson, the
primary contact, indicated that FAST had not been converted to OpenGL and there were no plans
to do so.)

pV3

pV3 (parallel Visual3) was developed at MIT and is targeted primarily for CFD codes. It is a
client-server system whose ancestor was the Visual3 system. The binaries (in various Unix
flavors) for the server and client are publicly downloadable from the pV3 web page, but the
source code is not made available. There is, however, source code for example clients (both
Fortran and C).

Like CUMULVS, pV3 uses PVM for its communication layer. And like CUMULVS, pV3 is
capable of plugging into/unplugging from a simulation and of doing computational steering.
Unlike CUMULVS, which has no visualization built in (it uses external packages), pV3 does its
own visualization (and is a "closed" package).

There supposedly exists a pV3-Gold which is a version with an "intuitive Motif GUI". However,
the link to pV3-Gold from the pV3 home page is apparently dead and attempts at contacting a
person responsible for pV3-Gold have so far been unsuccessful.

Vis5D

Vis5D was developed at the University of Wisconsin Space Science and Engineering Center
(SSEC). It is a software system for visualizing data produced by numerical weather models and
similar sources. Vis5D works on data in the form of a five-dimensional rectangle. That is, the
data are real numbers at each point of a "grid" which spans three space dimensions, one time
dimension and a dimension for enumerating multiple physical variables. Vis5D works fine for
data sets with only one variable or one time step (i.e. no time dynamics). However, your data
should have some depth in all three spatial dimensions.

One could argue that this package doesn't belong in this survey, since it seems to visualize only
static gridded datasets. However, given that the source code is freely available, it should be
possible to enhance it to perform remote visualization and interactive steering. In fact, one
enhanced version is Stream Enabled Vis5D which can take data as a stream over a network.

Another interesting fact about this package is its support of multi-processing. Quoting from the
User's Guide:

The SGI version of Vis5D uses multiple CPUs if available to compute graphics in
the background thereby increasing Vis5D's speed. On other systems, Vis5D tries
to interleave the computation of graphics with user interaction. This results in the
user interface being a bit sluggish until all pending graphics computations are
completed.

VisAD

VisAD is a descendant of Vis5D, but with very different genes. It too was developed at the
SSEC. VisAD is a pure Java system for interactive and collaborative visualization and analysis
of numerical data. It requires Java 3D and Java 1.2 (beta 4, as of this writing). (Vis5D was
written in C, as were earlier versions of VisAD). A VisAD application is an event-driven
network of: Data, Display, User Interface, and Computational Objects.

When asked about the possibility of doing various geometry filters (e.g., isosurfaces, decimation,
etc.) in VisAD, Bill Hibbard (the lead author) replied:

"Computational geometry is implicit in visualization operations. The current
DataRenderers include iso-surfaces for regular and irregular topologies, but no
decimation. The irregular Set constructors will apply Delaunay triangulation if
necessary. Applications could include extensions of DataRenderer that included
decimation."

Apparently steering is possible in VisAD. Quoting from the Overview chapter of the Developer's
Guide:

By allowing Data, Computational Cells, Displays and User Interface components
to be connected flexibly, VisAD supports computational steering interactions.

VisAD source code and documentation is freely available. Naturally, one needs to realize that a
particular version of Java/Java 3D may not be available on a particular platform/OS.

Scivis

Scivis is a collaborative scientific visualization system available from the Northeast Parallel
Architectures Center (NPAC), Syracuse University. Like VisAD, it also uses Java.

Quoting from the "What's New" page:

"Scivis has a sluggish performance when the software renders 3D colormapped
surface plots. Scivis can be drastically improved if we had hardware acceleration
for graphics. We are going to use the Java3D API when it is available in the
future releases. So the next release of Scivis will use JDK 1.2 and Java3D API.
But since Java3D API is not part of JDK 1.2, two different versions will be
released in the future. The difference is the usage between AWT rendering model
and Java3D."

According to the lead author, Scott Klasky, the next version of Scivis is "focusing on very large
data sets (1GB), with collaborations of over 10 people. We are designing this to be used with
collaborations of scivis3d (Scivis+java3D) and AVS users".

SCIRun

SCIRun is a "scientific programming environment for computational steering" from the
University of Utah. It is one project from the Scientific Computing and Imaging (SCI) research
group in the Department of Computer Science.

The user interface to SCIRun looks similar to AVS5. A user (graphically) builds a data-flow
network by connecting modules together. The modules represent operations on the data.

It seems that SCIRun is not publicly available and will become a commercial product in the
future.

AVS

On the AVS web site, we read:

For solutions to large-scale problems, AVS is designed to run in a distributed
environment. AVS modules can execute on supercomputers and massively parallel
machines, helping to bring visual computing to where your data and simulations
reside. When transferring data between machines with incompatible data formats,
AVS handles all data format conversion issues for you.

Data Explorer

At the IBM Data Explorer (DX) home page, we read:

Applications can also be built on top of portions of the Data Explorer system, so
that custom, turnkey applications can be easily developed using DX as the
computational and rendering engine.

The product's FAQ includes the following:

G12. Can I run DX on a parallel machine?

There is a separate version of DX, DX SMP, which supports intramodule, shared memory
parallelism on SMP machines (Sun SPARCstations and SGI Onyx and Challenge, and IBM
RISC/6000 SMP machines). Both DX and DX SMP support intermodule parallelism on
workstation clusters and on IBM SP machines.

G13. Can I build applications on top of DX?

While Data Explorer is a total visualization environment, you can also build applications which
use portions of DX. Thus you can create your own special-purpose turnkey application with a
custom look and feel, which uses Data Explorer behind the scenes. For an in-depth description of
some of the many ways you can embed Data Explorer functionality within your application see
building applications.

3. Summary

In summary, we provide a concise set of tables listing features of the packages described above.
For the non-commercial packages, we won't try to explain the licensing issues, e.g., Open
Source, copyright limitations, etc., but rather, simply designate it as being available in either
Source or Binary (libraries and/or executable).

CUMULVS

Availability www | Source

App Domain non-specific

Platforms

Dependencies PVM, [AVS]

Functionality
access data from a parallel application; steering; vis

via AVS module

DICE

Availability www | Binary (with permission)

App Domain non-specific

Platforms most Unix

Dependencies Tcl/Tk + Tix + BLT, OpenGL or Mesa, HDF

Functionality vis, access data from a parallel application

FASTexpeditions

Availability www | Source

App Domain CFD

Platforms SGI

Dependencies SGI gl lib

Functionality vis, collaboration

pV3

Availability www | Binary

App Domain CFD

Platforms most Unix

Dependencies PVM 3.3 or higher, platform-dependent graphics lib

Functionality parallel vis

Vis5D

Availability www | Source

App Domain numerical weather models (rect. Grids)

Platforms most Unix, Linux

Dependencies

Functionality Vis

VisAD

Availability www | Source

App Domain non-specific

Platforms SGI,IBM,Sun,HP,DEC Alpha,PC/Linux

Dependencies Java 3D, Java 1.2, Java RMI

Functionality vis/VR, collaboration, steering

Scivis

Availability www | Source

App Domain non-specific

Platforms ??

Dependencies Java

Functionality vis, collaboration

SCIRun

Availability www | To be commercial

App Domain non-specific

Platforms Unix (??)

Dependencies (??)

Functionality vis, steering, analysis

AVS

Availability www | Commercial

App Domain non-specific

Platforms most Unix, (NT-for Express)

Dependencies

Functionality Vis

Data Explorer

Availability www | Commercial

App Domain Non-specific

Platforms most Unix, NT, W95

Dependencies

Functionality Vis

4. References

CUMULVS www.epm.ornl.gov/cs/cumulvs.html
DICE frontier.arl.mil/clarke/dice.html
pV3 raphael.mit.edu/pv3/pv3.html
FAST science.nas.nasa.gov/Software/FAST
FASTexpeditions science.nas.nasa.gov/Software/FAST/FASTexpeditions/home.html
Tecate www.sdsc.edu/Tecate/tecate.html
DAQV www.cs.uoregon.edu/~hacks/research/daqv
scivis kopernik.npac.syr.edu:8888/scivis
MPI www.mcs.anl.gov/mpi/index.html
PVM www.epm.ornl.gov/pvm/pvm_home.html
HDF hdf.ncsa.uiuc.edu
HPVM www-csag.cs.uiuc.edu/projects/hpvm.html
Charm charm.cs.uiuc.edu/links.html
EnSight www.ceintl.com
AVS www.avs.com
IBM Data Explorer www.almaden.ibm.com/dx
Division Inc., dVISE www.division.com/2.sol/a_sw/sol_a.htm
VTK www.kitware.com/vtk.html
Java products www.javasoft.com/products
Java 3D API www.javasoft.com/products/java-media/3D
SCIRun www.cs.utah.edu/~sci/projects/sci-comp.html

